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J. Phys.: Condens. Matter4 (1992) 388L33903. Printed in the UK 

Possibility of solitary waves in the base stacks of DNA 

Detlef Hofmann, Janos Ladik, Wolfgang F6mner and Peter Otto 
Chair for Theoretical Chemistry and Laboratory of the National Foundation for Cancer 
Research at the Friedrich-Alexander-University Erlangen-NBmberg, Egerlandstrasse 3. 
D-8520 Erlangen, Federal Republic of Germany 

Reeeived 30 July 1991, in final form 14 January 1992 

Abstract. A realistic model for the dynamics of 8-DNA is developed and presented. Within 
this model we study the time evolution of conformational excitations of single nucleotide 
bases and base pairs in simple base stacks and in DNA helices. Further the possibility of the 
existence of solitary waves in DNA is investigated. On the basis of our classical model we do 
not find such a wave in DNA, but for a stack of adenine molecules without a backbone we 
predict one. Possible extensionsofthe mode l fo ro~n  are discussed. Fromour results wecan 
conclude that solitons exist in stacked systems without an additional backbone 

1. Introduction 

With the development of large computers, non-linear phenomena, described by non- 
linear differential equationswithout ananalyticalsolution, have becomemore andmore 
of interest. One of the most interesting results from such equations is the existence of 
solitons. In a mathematically strict sense solitons are analytical solutions of special non- 
linear differential equations. Solitons are non-dispersing wave packets, which are able 
to cross one another without perturbation. They do not change their shape and they do 
not lose their energy in time. Solitons are examined mathematically for instance. in [l]. 
In physics solitons are used to describe ferromagnetism [2], antiferromagnetism [3], 
phase changes [4], charge transport in tram-polyacetylene (PA) [SI, dynamics of the 
sugar-phosphate backbone of DNA [6], and dynamics of the two coupled base stacks of 
the DNA double helix bound by hydrogen bridges [7]. The first observation of such a 
solitary wave happened back in 1844 [8] in the form of a water wave in a channel. In 
optics the transport of light pulses through special fibres is soliton-lie [9] and solitons 
are observed also in Josephson junctions as fluxons [lo]. In the case of PA it could be 
shown that the numerical solutions for the continuum limit are identical to the exact 
mathematical ones [ll].  Another possible application is the transport of conformational 
energy in stacked systems. One of the best-known systems of this kind is the base stacks 
in DNA. This could provide a possible mechanism for carcinogenesis [12,13], since. the 
solitons can interfere with DNA-pIOtein interactions and thus might be able to remove 
blocking proteins from oncogens. Owing to their solitary nature, this interference can 
occur from the site at which the solitons were initially excited by the conformational 
change caused by carcinogen binding and subsequent release. Such long-range effects 
of carcinogens in DNA are necessary to explain their role in carcinogenesis, as was shown 
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Figure 1. Definition of the rotation axes in (a) adenine and (b) thymine. 

by simple statistical considerations, which exclude the possibility of a purely local effect 
of the chemical carcinogens [12]. 

Since we are considering numerical solutions of systems of differential equations, it 
is not possible to prove that the definition for a soliton is fulfilled exactly, and thus it is 
more correct to speak of solitary waves. In preliminary model calculations we have 
studied a stack of formamide molecules [14] and the influence of impurities in the form 
of thioformamide molecules [ 151. The results confirmed the existence of solitary waves 
in these model systems. A comparison of our model, where the molecules are treated 
as classical particles moving on an analytically given potential surface, with adiabatic 
ones in which the n-electrons were treated explicitly on the Hiickel and Pariser-Parr- 
Pople (PPP) level justified the use of our classical amafz for the potential energy surface 
(161. However, the parameters of the surface for the base-base interactions are cal- 
culated using methods fiom ab initio quantum chemistry. 

2. Method 

The ansafz for the total energy of our system is 

E,,, = EKm + Epi + E, + Ebb (1) 
The kinetic energy is given by Eltin, and the planar interaction between two base pairs 
by Epi. Epi is mainly determined by the two (three for the guanine and cytosine base pair) 
hydrogen bonds of adenine and thymine. The vertical stacking interaction between two 
bases is given by Ew, and the interaction of the sugar-phosphate backbone with a base 
by Ebb. Each base has three degrees of freedom, movement along the axis of the helix 
( z  axis) and two rotations. One is a rotation denoted by in the plane perpendicular to 
the helix axis and the other one 6 is  the tilting angle of the base (figure 1). 

Because the bases are not treated as point masses but as rigid bodies, the expression 
for the kinetic energy is [I71 

T" = i d  K"%l (24  
with 
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K"(1,l) = M 

K,(3,1) = 0 

Kn(2, 1) = M, sin 8" + M ,  cos 8, 
K. (3,2) = My' cos 8. - M, sin 8n 

Kn(2, 2) = M, + M,, 

(26) 
Kn(3,3) = M, c o ~ * 8 ~  + Myy + M, 

Also a detailed derivation of the equations of motion can be found in [18]. The abbrevi- 
ations are the following: 

+ 2M,, sin 8" cos 8,. 

M = Z ~ ~  M , = X ~ , P ~  M , , , = Z ~ , P ~ V , ~  d = ( z n , % , q m ) .  (3) 

Hereirandvarethespacecoordinatesx,yand~;P~isthecoordinateP(P =x,y,z)of  
atom i in the base at site 0 in the equilibrium position. The equilibrium positions follow 
from the ge4"try Of B-DNA. 

All energies of interaction were expanded with the help of a five-dimensional Taylor 
series in the degrees of freedom. Because the rotation axes for two interacting bases do 
not coincide, we have to distinguish between rotation of base 1 and base 2 (denoted by 
CY and j3), which both have to be treated explicitly. In contrast the movement in the z 
direction appears only in the difference Az = z1 - z2. Therefore the Taylor series is 
written in general (k is a vector containing the exponents, w contains the independent 
degrees of freedom) for the potential energies E,,,, Ep, and Ebb: 

W +  = (Az, 81, 82, 91, qz). 
Here o is a constant, which can be freely chosen. In all cases we have a dependence on 
site n. For the planar interactions we have only two different types I' of potential 
surfaces, namely adenine-thymine or guanin-ytosine. To consider this, we write 

Dk+ D p l , k , " , t  w+ + (.7nm - ZnB9 ~ n w ,  8rIp3 q m ,  q.8). ( 5 )  

Here CY and define the two different strands of DNA. With the help of symmetry 
arguments, one can see that for the pairs the other way round the same series is valid, 
e.g. one can use the same parameters for adenine-thymine as for thymine-adenine. 
Unfortunately this is not the case for E,. Here 16 different potential surfaces exist for 
the 4 x 4 possible combinations of basest,: 

(6) 
4-t Dvi ,k ,n , t . t ,+ i  

W +  + ( Z n + L y  - z.,y; %,; q n + 1 . y ;  qw) .  
Here y denotes the strand @or p. There are four possibilities for the interaction between 
sugars and a base r: 

D k j  D b b . k , n , i  w+ - ( Z n y  - = x y ,  B.,,, fisy, q n y ,  qry). (7) 
In our model the degrees of freedom (zsy, eSyr qsy) for sugar are kept fixed and are not 
treated explicitly up to now. For a unique descriptlon of all interactions, it was preferred 
towritethepotentialsurfacesinthisway. Also thiswillallow one toincludethedynamics 
of the sugar-phosphate backbone in future without change in the formalism. 

We used two methods to obtain the necessary parameters D since direct ab initio 
calculations would be too time-consuming owing to the size of the molecules involved 



3886 D Hofmann et a1 

and the large number of points that have to be computed on the potential surfaces. For 
the covalent bonds of the bases to the backbone, an all-atom force-field model was used 
[19]. Thismethod divides the energy into asum ofterms for bondlengths, angles between 
bonded atoms, torsional angles, hydrogen bonds, electrostatic interactions and non- 
bonding interactions (van der Waals interactions): 

E,, = K R ( R  - Ro)' + K*(6  - 60)' + V" 2 1 [l + cos(ncp - V)]  
bods bond dihedral n 

angles w k s  

Here R, is the standard bond length and eo the standard bond angle. The term for the 
dihedral angles is a Fourier expansion; however, as usual we use only one term of the 
series, where it depends on the actual dihedral angle which one is applied (number of 
minima in the potential for the rotation). The necessary parameters were in general 
determined from infrared and Raman spectra and a set optimized for DNA was taken 
from [19]. The atomic changes q, we have calculated with the help of ab initio Hartree- 
Fock calculations using an atomic basis set of double-cquality [20]. Since we consider 
only small displacements, this amutz can be used for our purpose. Necessarily an umutz 
like (8) has its limitations. First of all the asymptotic behaviour for large bond lengths R 
is wrong. If larger displacements are considered, one should replace the Taylor series in 
(R - Ro) by an (R - R,)-" expansion, although this would require a larger number of 
parameters and consequently would increase the necessary computation time. Owing 
to the linear amatz for the forces in (8), also overtones in the vibrational spectrum are 
described incorrectly. Furthermore, also the bond angles would be better described via 
an expansion into a Fourier series instead of the applied Taylor series. However, 
for small displacements as considered by us, ansatz (8) is sufficient. The non-binding 
parameters E a i d  r* given in [19] are related to the parameters C and D in the Lennard- 
Jones 10-12 potential for hydrogen bridges via 

c = h & ( P ) ' 2  D = 2 ~ ( r * ) ~  (9) 
where E is the energy of a hydrogen bridge and r* is the displacement relative to one of 
its minima. However, we compute only the sugar-base interaction with this ansatz and 
therefore no hydrogen bridges occur in our case. The geometry of the sugar fragment 
used in our calculations is shown in figure 2. 

The potential surfaces between stacked or hydrogen-bonded bases were calculated 
with the pseudo-polarization tensor mutually consistent field (PFT-MCF) method [21-241, 
which results in interaction energies of ab initio Hartree-Fock (double-5 basis set) 
quality [24]. This method is of higher quality than the force field described above, but 
can only be used for non-bonded interacting molecules. Therefore it is not possible to 
apply it to the sugar-base interactions, which include a covalent bond (C-N) between 
the interactingfragments. In the Pm-McFmethod the electrostatic potential of a molecule 
I calculated on the ab initio Hartree-Fock level is fitted by a number (&) of point 
charges qf at points r:. The position vectors of these point charges of the free molecule 
are shifted owing to the electric field of another molecule with which it  interacts. 
This shift is obtained with the help of pseudo-polarization tensors. These tensors are 
calculated by computing the point-charge distributions of the free molecule in electric 
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Figure 2. Geometry of the sugar fragment as used in 
ourcalculatiom. r [ C- H I  = 1.081 x 

fields of different strengths. Having once fixed the point-charge distribution and the PPT 
of a molecule, one can apply these for calculation of interaction energies with any other 
molecule. Since the point-charge distributions in this way are allowed to relax upon 
interactions, the polarization part of the interaction energy is directly included in the 
electrostatic interaction energy between the point-charge distributions. 

The total interaction energy between two molecules 1 and J is then computed as 

AEu = Egt, + E&, +E?& (10) 

where E,,* is the electrostatic interaction energy plus the polarization energy, Em& the 
intermolecular exchange energy and Edisp the dispersion energy. E,,, is given by 

In (11) the nuclear charges are Qi, R i  is the position vector of the kth nucleus in the Ith 
molecule and M' is the number of nuclei in molecule 1. In an actual calculation one 
computes the electrostatic potential of the charges of molecule J at the positions of all 
point charges of molecule I. Then with the help of the pseudo-polarization tensors the 
shifts of the point charges of molecule I due to the presence of the charges of molecule J 
are calculated. Thenthecorrespondingshiftsinldue to the presenceof I aredetermined. 
With the new point-charge distributions of I and J the procedure is repeated until the 
iteration converges. In this way the polarization energy is included in E,,,,. 

The exchange energy is given approximately by 

The necessary electron density p is computed with the help of the Hartre-Fock 
wavefunction of the free molecules. The weighting factor wj is given by qf /N' ,  where 
Ni is the number of electrons in molecule 1. 

Finally, the intermolecular dispersion energy is taken into account employing a 
London-type expression, together with empirical parameters 1181: 



Table 1. Comparison of the largest error A€- and the average error A€,= in the fit of ow 
potential surfaces by Taylor series With the larges! (E-) and smallest (Emn) interaction 
energy occurring (aU energies in millihartrees) together with the number of points m cam- 
puted on each individual surface (idex v indicates a stacked base pair, h is a hydrogen- 
bonded one; S indicates sugar, A adenine and Tthymine). 

~ 

Surface AEm., AESve E., Emin m 

A-& 0.985 0.054 6.434 -6.879 911 

T-T, 2.546 0.148 18.305 -31.554 997 

A-Tb 0.403 0.021 3.143 -10.305 969 
S-A 483.192 2.077 1258.513 -13.227 997 
S-T 163.370 3.489 924.999 -6.298 997 

A-T, 0.446 0.024 8.190 -2.978 997 

T-k, 9.998 0.214 9.445 -18.727 988 

where n; is the polarizability and IP, the ionization potential of atom i in molecule r )  in 
its valence. state. R,! is the distance between the nuclei i in I and j in J .  To get an idea of 
the quality of this approximation, we computed the dispersion energy between two 
stacked adenine molecules in B-DNA geometry and obtained with the help of (13) a value 
of -0.2891 eV [25]. This is in very good agreement with the ab inrtio (Hartree-Fock 
valence split basis set calculation and perturbation theory for interacting molecules 
including overlap for the dispersion term) result of -0.2865 eV [26]. 

For all potential surfaces necessary, m points on each of them were calculated and 
the so-called I,-norm r(w) was minimized, to fit our Taylor seriesamafz to the calculated 
points: 

m & l k F O  5 

with r l = E , -  x D k n w f , .  (14) 
k,>O t = l  

.(w) = IrtI 
I= I 

With this method the sum of distances of the points calculated by the Taylor series and 
by the ab initio PPT-MCF method at randomly chosen points 1 on the potential surface is 
minimized. The number of parameters is for an n-dimensional Taylor series ( n  = 5) of 
order U ( U  = 6) :  

(" ") = 462. 

Table 1 shows the maximal interaction energy E,, in the fitted range, the minimal 
interaction energy E,,, the maximal error, the average error and the number of points 
m. AE,, is quite large using this norm, but these errors are near to the borders of the 
fit region for the potential surfaces and for that reason not very important. This region 
is never reached in a dynamic simulation. The fitted range was for the angles k0.2 rad 
and for the displacement in the z direction 5 1.2 Bohr. The relative average error is very 
small (about O S % ) ,  especially near to equilibrium, and therefore this method was 
preferred against a least-squares or 1,-norm. If the interactions are of vertical type, A- 
B, denotes B following A in the z direction. The horizontal interaction A-Bh denotes a 
hydrogen-bonded base pair with A in the LY and B in the ,5 strand. The structures of the 
units were implemented in the PPT-MCF program [27] and were taken from the crystal 
structure of B-DNA [28,29].  
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After having obtained all the necessary potential surfaces in analytical form, the 
equations of motion of the system were numerically solved with the help of a simple one- 
step procedure. These equations can be obtained from the expressions for the kinetic 
(T) and potential energy (V)  via Euler-Lagrange equations of the second kind (see [17] 
for details). They read as 

K , B ,  + Q. = F ,  (16) 
where q. denotes the vector of the three geometrical degrees of freedom of each base n 
(z", en, qn) and the forces can be computed from the potential energy as 

F ,  = -av/aq,.  (17) 

Q,(I) = (M, cos 8- - M, sin 8 ~ @  

Q,(3) = - (Mxy cos 8n + M, sin en)& - 2Ynbn@, 
Y, = (1 - cos28,Jiw, + (M, - M Z z )  sin en cos fin. 

Further 

= Y.@! 
(18) 

Since in our case Kn(Q is non-singular over the whole range of the variable, this can be 
rewritten as 

(19) 4 =K-1 (F,  -e.). 
Then from the geometry and the velocities at a given time step, one can compute the 
accelerations and, assuming these accelerations to be constant over the time step length 
z, the geometries and velocities at the next time step can be calculated. In this way after 
the time mz we obtain 

&[(m + 1)aJ = q.[ms] + rK;'(F.[mz] - Q,[mzJ) 

qJ(m + l)zI= q . W I  + zQ.[(m + Wl. (20) 

A time step length of 2 fs (femtoseconds) is sufficiently small to keep the error in total 
energy less than 0.1% of the kinetic energy. Further reduction of the time step size 
did not change the results. For the simulations performed in this work, the one-step 
procedure is sufficient; however, in future simulations on longer chains with larger 
simulation times one has to introduce a higher-order procedure (e.g. a Runge-Kutta or 
a predictor-corrector method) in order to reduce the computation time. 

3. Results 

First ofallwecomputed911 randomlychosenpointson the potentialsurfaceofastacked 
adenine dimer (A-A,) in the above-mentioned region of 20.2 rad for the angles and 
2 1.2 Bohr for the displacement z along the helix axis around the equilibrium geometry 
of B-DNA (3.36.& distance and rotation of 36" around q between the two bases). After 
the fitting procedure described above we computed a number of additional points on 
the surface with the PFT-MCF method and compared the results with values calculated 
from our analytical potential surface in order to check the quality of our fit. The results 
are displayed in figure 3. In each of the curves only one of the variables was varied, while 
the others were kept at their equilibrium values. 
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Figure 3. Comparison of potential C U N ~ S  from our fit (full curves) and points wmputed 
directlywith the PFT-McFmethodfor thefivewordinatesforA-A,(energiesinmiUihartrees). 

Obviously the agreement between the directly calculated points and the curves 
obtained from the fit is satisfactory. Further we note that the potential as a function of 
q has no m i n i u m  in the fit region. Therefore, we decided to keep the angles q~ and 6 
frozen in our first dynamic simulations of single- and double-stranded nucleotide base 
stacks (without inclusion of the backbone potential). This seems to be justified because 
in our previous simulations [15] on formamide stacks we observed that the angle q had 
a rather unimportant influence on the dynamics, while excitations of the angle 6behaved 
similar to excitations in the displacement z [15]. In these simulations of pure adenine 
and thymine stacks (single strand, no backbone) we used open chain ends and initial 
displacements in z of the second unit. In figure 4 we show the time evolution of the 
local kinetic energy T, of an adenine stack for different initial excitations as a function 
of site n. 
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Initial excitations of the second site between -0.1 and -0.3 Bohr did not lead to 
formation of solitary waves. As an example of this behaviour the case 4 2 )  = -0.3 Bohr 
is shown in figure 4(a). The excitation clearly disperses rapidly over the entire chain. In 
the case of z(2) = -0.4 Bohr (figure 4(b)) we still observe considerable dispersion; 
however, also a solitary wave starts to form, which can be clearly seen in figure 4(c) with 
4 2 )  = -0.5 Bohr. In this case even two waves of solitary character are emitted from the 
initial excitation, one immediately, the second one with a considerable delay. Both 
waves have similar amplitudes and velocities and they seem to be unable to survive the 
reflection at the chain end. However, the latter observation is not clear owing to the 
short simulation time. Figure 4(d) shows the case of an excitation (-0.4 Bohr) in the 
middle of the chain. Now two waves are emitted in opposite directions, and obviously 
they do survive reflection at the chain ends and the collision with each other, although 
after reflection the dispersion of energy is enhanced. Thus also in the former case of the 
4 2 )  excitation one expects that the waves survive the reflection at the chain end. Finally 
figure 4(e) shows a case where we have fixed the two terminal molecules. In this case 
already for 4 2 )  = -0.2 Bohr a solitary wave forms with an estimated effective mass of 
740me and a velocity of about 1.6 km s-*. However, it seems to us that open chain ends 
should be a more realistic boundary condition. The solitary waves observed are quite 
similar to those in formamide stacks [U] where also a lower threshold for solitary wave 
formation was found to exist in the excitation energy. However, the formation of two 
waves from a local excitation was not found in that case. In figure 5 we show the results 
of similar simulations on pure thymine stacks. 

Weobserve thesame behaviourasinthecaseofadeninewithsolitarywaveformation 
starting from r(2) = -0.4 Bohr. Figure 4(b) shows that in the thymine case the two 
waves form with less dispersion of energy than in the adenine stack. Also the solitary 
waves in the thymine stack appear to be considerably faster than in the adenine stack. 
The long-time simulation (figure 4(c)) indicates that the second wave survives reflection 
at the chain end, while the first one, which has a smaller amplitude, disperses upon 
collision with the second one after reflection. 

In a next step we calculated the potential surfaces A-T, and T-&. With the help of 
these surfaces we could test the inflcence of aperiodicity on the solitary waves. Before 
starting a simulation it was necessary in this case to perform a geometry optimization, 
because the thymine molecule in the middle of the adenine stack causes a geometry 
distortion. This can be done by performing a simulation on the system, but multiplying 
the velocities of the bases with a factor of 0.95 after each time step. In this way one does 
not obtain a dynamical simulation, but a smoothly converging geometry optimization, 
which is complete when the kinetic energy vanishes. This procedure is identical to a 
modified gradient optimization method. Figure 6 shows the influence of one thymine 
molecule at site 10 in an adenine stack, where in this simulation the chain ends were kept 
fixed. The initial excitation was z(2) = -0.2 Bohr as in figure 4(e). 

As we have observed earlier [15] in the case of formamide stacks disturbed by 
thioformamide molecules, the influence of impurities on solitons dependson differences 
in the masses and on the different electronic interactions of the impurity molecule 
compared to the host system. Because both influences are very large for thymine 
molecules in an adenine stack, the transmission coemcient is even smaller than in the 
case of formamide stacks perturbed by thioformamide molecules. This should change 
for stacks of adeninsthymine base pairs disturbed by guanine-cytosine pairs because 
the masses and the structures are more similar. 

In further computer experiments we have studied double-stranded stacks of hydro- 
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Figure 4. The local kinetic energy T. (mHartree) as a function of time and site n in a stack 
of adenine molecules (single strand without backbone, t9 and p frozen; with the exception 
of (e) the chain ends were allowed to move freely) for different initial excitations: (a) z(2) = 
-0.3 Bohr; (b)  r(2) = -0.4 Bohr; (c) z(2) = -0.5 Bohr; ( d )  z(l0) = -0.4 Bohr; (e) z(2) = 
-0,ZBohr. fixed chain ends. 
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FigureS. Sameasfigure4forapure thyminestackandinitialexcitationsof (a)z(Z) = -0.2 
Bohr; (b)  z(2) = -0.4 Bohr; (c)  z(2) = -0.4 Bohr (larger simulation time). 

~ ~~~ 
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Figure 6. Same as figure 4 for a stack of adenine molecules with one thymine unit at site 10; 
fixed chain ends, geometry optimization prior to simulation and initial excitation of z(2) = 
-0.2Bohr. 

gen-bonded adeninethymine (A-T) base pairs. Also in these calculations we did not 
include the backbone potential and worked with open chain ends. The angle 6was kept 
frozen again. In the simulations shown in figures 7 ( a H c )  q was frozen also, while in 
figures 7(d)-(f) it was allowed to be free. We see that in the double-stranded case for a 
small excitation in z(2) no solitary wave is formed. In figure 7(b)  after a delay of about 
0.5 ps a solitary wave is emitted from the initial excitation of r(2) = -0.4 Bohr. After 
this the rest of the excitation disperses. Immediately after the start of the simulation a 
wave of rather small amplitude also starts to propagate. A similar behaviour is observed 
for the larger excitation in figure 7(c). Although the movement of the solitary wave is not 
as regular as for the smaller excitationin thiscase, the energy is here more concentratedin 
the wave than before and the energy dispersion is reduced. In figures 7 ( d )  and (e) we 
observe that the behaviour of the system is not changed very much when the angles q 
are allowed to change. Figure 7 ( f j  shows a solitary wave emitted from an excitation in 
both variables (r(2) = -0.4 Bohr, q(2)  = -0.02 rad = -1.1"). For larger excitations 
in q the stack turned out to be unstable owing to the lack of a backbone potential. 
Further, in figure 8(a) we show the case of a double-stranded A-T stack with a reversed 
T-A pair in position 9. The initial excitation was 4 2 )  = -0.4 Bohr, and the angles were 
frozen again. 

The transmission coefficient for the wave through the perturbation is rather small 
and most of the energy is reflected. Thus it is not surprising that in an alternating stack 
of A-T and T-A pairs (figure 8(b) )  no solitary wave is formed. The situation is similar 
to the case of a single-stranded A stack with a T impurity discussed above. The only 
difference is that here the hydrogen-bonded pairs are always moving together. Thus 
there is no difference in the masses of the moving entities (hydrogen-bonded A-T and 
T-A pairs). Therefore we have to conclude that the differences in the interactions 
between stacked AA (TT) and AT pairs constitute a large enough disorder to reflect 
most of the energy of the solitary waves. Thus we can conclude that starting from initial 
excitations as considered by us and in the absence of disorder solitary waves exist in 
stacked single and double helices of nucleotide bases, provided that the initial excitation 
is large enough and that no backbone is present. 

To improve the model for DNA further, in a next step the interaction of the sugar 
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”.  

Flgure 7. Time evolution of the local kinetic energy T. as a function of site n for a double- 
stranded A-Tstack(openchainends, no backbone potential). The figures showonlyone of 
the twostrands, becausethepictureforthesewndonewasidenticalineachcase. In(at(c)  
the angles q were kept fixed; 
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Flgure 7 continued in ( d t ( f l  they were allowed to move. The angles B were frozen in all 
simulations. The initial excitations (always a complete hydrogen-bonded A-T pair was 
displaced) are: (cz) r(2) = -0.2 Bohr; (b)  r(2) = -0.4 Bohr; (c) z(2) = -0.6 Bohr; ( d )  
r(2) = -O.ZBohr;(e)r(Z)= -0.4Bohr;(f)2(2)= -0.4Bohrandrp(2)= -0.02rad. 
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Figure 8. Time evolution of the local kinetic energy T. as a function of site n and time for: 
(a )  a double-stranded A-T stack with a reversed T-A pair in position 9; and (b )  a double- 
stranded stack with alternating A-T and T-A base pairs; with an initial excitation of r(2) = 
-0.4 Bohr on both strands (open chain ends, angles frozen, geometry optimization prior to 
simulation, only one strand shown, second one identical to first one). 

molecules in the backbone with the nucleotide bases was added. The sugar molecules 
were taken to be rigid during the simulations. In contrast to the previously described 
calculations now none of the degrees of freedom for the bases was frozen, because the 
additional C-N bonds between an N atom of the base and a C atom of the sugar stabilize 
the bases close to the measured crystal structure. In figure 9 we show the dynamics of a 
single-stranded adenine helix including the backbone potential. In this simulation the 
initial excitation was z(l0) = -0.1 Bohr, the chain ends were kept fixed and the angles 
were allowed to change freely. Excitations in 6 and in 9 or combined ones show a similar 
behaviour. Thus we show only one example. Figure 9 shows that already after roughly 
1.5 ps the initial excitation is dispersed through the whole chain and no solitary waves 
are formed. 

Finally a double helix of hydrogen-bonded A-T base pairs including the backbone 
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-re 9. Time evolution of the local kinetic energy T. as a function of time and site in  a stack 
of adenine molecules stabilized by sugar as backbone (initial excitation r( l0)  = -0.1 Bohr, 
geometry optimization prior to simulation, hxed chain ends, ail variables change freely). 

wastreated. As afirst step thegeometryof the stack startingfrom the structure of 8-DNA 
was optimized. The optimized geometry deviates from the e erimental structure of B- 

2.41", cp = 1.64" and z = 0.11 A. These rather small deviations indicate that our model 
of B-DNA is rather realistic in the present stage, at least for static properties such as the 
equilibrium structure. Figure 10 shows the time evolution of the local kinetic energy in 
such a double helix starting from different initial excitations. Here all geometrical 
degrees of freedom are now free (none of them is frozen) and we used fixed chain ends. 

Figure 10(a) shows a case where only the adenine molecule in an A-T pair in the 
centre of the chain was displaced by -0.1 Bohr in the z direction. The dispersion of the 
excitation energy is slower than in the single-stranded case, which should be due to the 
coupling of the bases to the second strand by the two hydrogen bonds. For that reason 
the energy remains localized at the initial point for a longer time. To discuss the results 
in more detail the first picosecond of this simulation is enlarged in figure 10(b). It is 
obvious that a high-frequency vibration is excited that is not present in figure 9. This 
vibration is due to the excitation of a vibration of the C-N bond to the backbone together 
with the perturbation of the hydrogen bonds between A andT. It seems that the presence 
of an additional coupling in the system, which is much stronger than the one responsible 
for the transport, prevents the formation of solitary waves. For that reason a more 
flexible backbone (lowering the force between base and sugar) may support a solitary 
wave. In figures lO(c) and (d) we show the time evolution of initial displacements in the 
z direction of a whole hydrogen-bonded A-T base pair at site 2 for two excitation 
energies. We see that also in this case mainly a high-frequency vibration of the C-N 
bond is excited and the energy remains at the excitation site for a rather long time. 

DNA [29] for adenine by 6 = 3.75", q = 0.13" and z = -0.05 T and for thymine by t9 = 

4. Conclusion 

The basic aim of the present work was first of all to develop a realistic description of 
the dynamics of 8-DNA and the investigation of the time evolution of conformational 
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Fig" 10. Time evolution of the local kinetic energy T. as a function of time and site in a 
double helix of hydrogen-bonded A-T base pairs stabilized by sugar as backbone for the 
following initial excitations (all other conditions as in figure 9. only one strand shown): (0) 

~ ( 2 0 )  = -0.1 Bohr (only the A molecule of the pair excited); (b)  first picosecond of (a); (c) 
z(2) = -O.OSBohr(A-Tpairexcited); (d)r(Z) = -O.ZBohr(A-Tpairexcited). 

excitations of the nucleotide bases. With the help of our program we performed computer 
experiments and observed the formation of solitary waves under special conditions 
within our simplified model of DNA. This model could easily be extended to the 
description of, for example, melting phenomena in DNA, which up to now have been 
investigated with more approximate theories (e.g. two chains of harmonically coupled 
point masses, with Morse-type potentials between them to simulate the hydrogen bonds 
between bases) [30,31]. For this purpose one can simply couple the sugar molecules, 
which are rigid in our model, by a harmonic force or again with the force-field model 
similar to the coupling between sugar and bases. In addition one would need one further 
degree of freedom, which describes displacements of the bases perpendicular to the 
helix axes. Work along this line is in progress in our laboratory. 

Up to now within our theoretical model in all stacked (formamide, thioformamide, 
adenine, thymine and A-T) systems we have found conformational solitons. It seems 
that this is a widespread phenomenon and should exist, for example, in 7,7', 8,8'- 
tetracyanoquinodimethane tetrathiofulvalene (TCNQ-TIT) stacks and similar systems, 
where solitons may even serve as charge carriers [32]. If an additional strong coupling 
besides the coupling necessary for transport (like the backbone in DNA) is present, the 
soliton isdestroyed, asinour classicalmodel with rigidsugar. However, we have worked 
out and applied a rather realistic model for the description of the dynamics of DNA. With 
the present version of the model we could not decide clearly on the presence or absence 
of conformational solitary waves in the base stacks of DNA; however, the model (and 
also the corresponding program) can be extended in a straightforward but tedious way 
as described below. 

To be able to give a decisive answer whether solitons play a role in carcinogenesis or 
not, the model has to be extended. For example, a quantized oscillator (as the C-N bond 
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Elgum 11. The (Ar,  8,) potential energy surface for displacement of the adenine molecule 
of asingle A-Tpairin thecentreof anadenine-thymine double helix with backbone (energy 
in meV). 

stretching vibration) can be excited only with definite quanta of energy from one 
stationary state to another. In figure 11 we show the excitation energy of an adenine 
moleculeinanA-TdoublehelixasafunctionofthedisplacementsAzand 6,. The figure 
shows that only displacements larger than 0.1 8, in Az and about 5" in 6, cause an 
excitation energy larger than 150 meV, which is the vibrational (bond stretching) quan- 
tum of energy for a G N  bond known from infrared spectra. Up to this energy no 
stationarystateof thisoscillator exists. Thusin afirst attempt to search for solitary waves 
in the base stacks of DNA, one can include quantum effects at least for the C-N bond 
stretching vibration in the equations of motion. However, one has to keep in mind that 
we are dealing with non-stationary states, which can take up any amount of energy. 

Further one might search for other definitions of the degrees of freedom than those 
used in this work. For example, one can use a rotation of the bases around the C-N 
bonds instead of the coordinate 6. A rotation of this kind would also lead to a tilting of 
the bases as required, but would not excite the C-N stretch. In addition, one can think 
of a more flexible backbone to reduce the sugar-base coupling strength. A fit of a larger 
region of the potential surfaces would probably also be of importance. However, in this 
case one would have to expand the displacements in z into a 1/z" series instead of a 
Taylor series and the angles into a Fourier series. However, these extensions of the 
modelare beyond thescope ofthe presentwork, whichisaimedmoreat the development 
of a basic model, which afterwards can be extended along the Lines described above. 

If the soliton mechanism were not possible in DNA, other long-range mechanisms 
have to be examined, like the rearrangement of the tertiary structure, the change of 
dispersion and polarization forces between DNA and protein chains due to charge trans- 
fer, etc [33]. 
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